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Introduction 
Dear candidate,  

Thank you for choosing to enrol into the Nanobiology program! We hope to see you at the start of 

the academic year.  

This reading material has been composed for you as a preparation for the selection exam, the second 

round of the selection procedure. The exam itself consists of four parts, representing the four 

sciences most important to the Nanobiology program: Mathematics, Chemistry, Physics and Biology. 

You will be introduced to these topics in this reading material. The biology part has no written 

material. Instead, we ask you to watch part of a lecture of one of the first Nanobiology courses for 

1st-year students, Genetics. This is an opportunity for you to get used to the lecture-based style of 

teaching which is applied in universities. The lecture video can be found in the section “Study 

material selection exam” on the Online Courses homepage and under “Documents” in the top blue 

bar.  

In addition to this reading material, we assume that candidates who take this exam know the basics 

of these four sciences as taught in high school. This includes topics such as integration (including 

indefinite or partial), differentiation and the associated rules of calculation for Mathematics, or DNA 

and its replication as well as the central dogma for Biology. While there will be no explicit questions 

covering these concepts, we will build on them in this study material. Thus if you find this material 

hard to understand, please recap your knowledge.  

During the exam, you are allowed to use a non-graphing calculator, pen, and scratch paper. All 

necessary constants will be given in the exam itself, but you do have to remember certain formulas. 

The formulas you are expected to know are highlighted in blue in this reader and are listed at the 

end. We do expect that interpretations and derivations of these formulas are also part of your skill 

set.  

Please make sure you have read the “Manual Online Proctoring”, available on Online courses, for the 

do’s and don’ts while taking a proctored exam.  

With this prelude, we wish you the best of luck!  

 

With kind regards,  

The Nanobiology Selection team 

 

 

 

 

 

 

 

 



  
 

  

I. Mathematics: Differential Equations 

Algebraic and Differential equations 

Algebraic equations 
Until now, you will have mostly worked with equations of the form 

𝑦 = 𝑓(𝑥) 

A famous example is the quadratic equation, 𝑦 = 𝑥2. We can solve such an equation for 𝑥 to get the 

expression 𝑥 = ±√𝑦. Now, for every value y that we have, we can find the corresponding value(s) of 

x. We can also check our solution by inserting 𝑥 = ±√𝑦 back into our original equation.  In that case, 

𝑦 = 𝑥2 =  (±√𝑦)2 = 𝑦. Hence our solution is indeed correct.  

Often, we use algebraic equations such as the quadratic equation to find a certain value 𝑦 given our 

information 𝑓(𝑥). We can further analyse algebraic expressions by taking their derivative 

𝑦′(𝑥) =
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
𝑥2 = 2𝑥 

or the integral 

∫ 𝑥2𝑑𝑥 =
1

3
𝑥3  +  𝐶 

with 𝐶 an arbitrary mathematical constant. 

Please make sure you are familiar with these concepts before you continue with the reader.  

Differential equations 
Often in a physical or biological context, we do not know the specific function 𝑓(𝑥) which most 

accurately represents our system. Rather, systems can be described by their change from one time 

point to the next.  

Say you want to grow a strain of bacteria in your lab. You know that your strain grows by a factor of 

𝑎 =  0.1 per hour. That means that after one hour, we will have +10% more bacteria than at hour 1. 

We can thus write 

𝑑𝑦(𝑡)

𝑑𝑡
= 0.1𝑦(𝑡) = 𝑎𝑦(𝑡) 

where 𝑦(𝑡) is the bacterial population on any day 𝑡.  That is, the number of bacteria on a certain day 

is dependent on the number of bacteria the previous day.  

Say we now leave the agar plate with the bacteria out in the open. Then we will get a constant influx 

𝑏 =  5 of bacteria from the environment. Our equation then takes on the shape  

𝑑𝑦(𝑡)

𝑑𝑡
= 0.1𝑦(𝑡)  +  5 =  𝑎𝑦(𝑡)  + 𝑏 

Such an equation, which describes the relationship between an unknown function 𝑦(𝑡), its 

derivative(s)1 
𝑑𝑦

𝑑𝑡
  and the variable of the function (e.g., 𝑡), is called a differential equation. 

 
1 While this reader will deal mostly with differential equations relying only on their first order derivative 

𝑑𝑦

𝑑𝑡
 

(fittingly called first order differential equations), they can also include higher order derivatives such as 
𝑑2𝑦

𝑑𝑡2 , 

which is the derivative of the derivative.  



  
 

  

The solution to a differential equation is a function 𝑦(𝑡). As an example, the solution to 

𝑑𝑦

𝑑𝑡
= 1.6𝑦(𝑡) = 𝑎𝑦(𝑡) 

is 

𝑦(𝑡) = 𝐶𝑒1.6𝑡 

where 𝐶 represents an arbitrary constant. We will look at how to find this solution in one of the 

sections below. This constant can usually be determined by further information we have about the 

system, for example the initial number of bacteria 𝑦(0). We call information about the function 

value at 𝑡 =  0  the initial condition. 

Basic differential equations can be very useful when it comes to modelling systems where we have 

an inflow and outflow of system components, as with our growing bacterial strain. In general, such 

equations will have the following form: 

Change in system parameter = influx - outflow 

For lab-grown bacteria, we often look at the number of colonies or the number of bacteria as our 

system parameters. Influx then describes anything that increases this amount: population growth, 

bacterial influx due to contamination and the addition of new bacteria all fall in this category. 

Correspondingly, outflux then describes all occurrences that decrease the number of bacteria 

present, such as bacterial death or isolation (taking out) of bacteria. We can then use the model to 

make predictions about our system, like in this case the quantitative development of our bacterial 

population. 

In this reader, you will be introduced to a few methods to solve certain types of differential 

equations.  

Solving Differential Equations with a y-independent right-hand side 
Arguably the simplest type of differential equations (henceforth also referred to as DEs) is 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) 

Examples of this are equations such as  

𝑑𝑦

𝑑𝑥
= 𝑥2          

𝑑𝑦

𝑑𝑥
= 5𝑥3 + 7         

𝑑𝑦

𝑑𝑥
= 𝑒3𝑥           

𝑑𝑦

𝑑𝑥
=

1

𝑥
. 

What these DEs have in common is that the first derivate of 𝑦(𝑥) is described only in terms of a 

function of its variable, x. That is, the function 𝑦(𝑥) itself does not appear in the DE.  

You might already know how to solve this type of equation! We do this by applying integration to 

both sides: 

𝑦 = ∫
𝑑𝑦

𝑑𝑥
𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 

For instance, taking 

𝑑𝑦

𝑑𝑥
= 5𝑥3 + 7 

                                                                                                                                                      

as our example, we can integrate  



  
 

  

𝑦 = ∫
𝑑𝑦

𝑑𝑥
𝑑𝑥 = ∫(5𝑥3 + 7) 𝑑𝑥 

to obtain 

𝑦(𝑥) =
5

4
𝑥4 + 7𝑥 + 𝐶 

as our solution, with 𝐶 an arbitrary constant. Try taking the derivative of 𝑦(𝑥) to check for yourself 

that this solution is correct! 

To determine the value of 𝐶, an initial value is needed. This additional piece of information often 

takes the form of 𝑦(0) = 𝑎. For this equation to hold, our solution must thus fulfil the requirement 

𝑦(0) =
5

4
⋅ 04 + 7 ⋅ 0 + 𝐶 = 𝑎 

From this, we can deduce that 𝐶 = 𝑎. Hence our final solution is 

𝑦(𝑥) =
5

4
𝑥4 + 7𝑥 + 𝑎 

For example, taking 𝑎 = 2 this becomes 

𝑦(𝑥) =
5

4
𝑥4 + 7𝑥 + 2 

 

Initial values usually follow from physical conditions on the system we are trying to analyse. Note 

that we don’t always have this information given when solving differential equations. In such cases, 

make sure to keep the arbitrary constant 𝐶 in your answer, which represents the general solution for 

any system of this kind. 

Solving separable differential equations 
Another type of differential equation we can try to solve are separable differential equations. These 

equations are of the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥)𝑔(𝑦) 

That is, the derivative of 𝑦(𝑥) with respect to 𝑥 is the product of two functions. One of these solely 

depends on 𝑥 and the other depends only on 𝑦. Examples of such differential equations would be 

𝑑𝑦

𝑑𝑥
= (𝑥2 − 2)(𝑦 − 4)          

𝑑𝑦

𝑑𝑥
= 6𝑥𝑦          

𝑑𝑦

𝑑𝑥
= −16𝑦 

 Note that the previously discussed equations written as  
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) are also a type of separable 

differential equations, with 𝑔(𝑦) = 1.  

So how do we go about solving these equations? The first step in solving separable DEs is to separate 

the two variables, in our case 𝑦 and 𝑥, by putting all terms containing 𝑦 on one side of the equation, 

and all terms containing 𝑥 on the other side of the equation. For example, we can rearrange the 

equation 
𝑑𝑦

𝑑𝑥
= (𝑥2 − 2)(𝑦 − 4) 

 



  
 

  

to 
1

𝑦 − 4
𝑑𝑦 = (𝑥2 − 2)𝑑𝑥 

Now, we can put an integration sign in front of both sides of the equality: 

∫
1

𝑦 − 4
𝑑𝑦 = ∫(𝑥2 − 2)𝑑𝑥 

 

Note that each of the sides has to be integrated with respect to a different variable: ∫
1

𝑦−4
𝑑𝑦 is an 

integral with respect to 𝑦, while ∫ (𝑥2 − 2)𝑑𝑥 is an integral with respect to 𝑥. Remembering this, we 

can now do the integrations: 

∫
1

𝑦 − 4
𝑑𝑦 = ∫(𝑥2 − 2)𝑑𝑥      

Which becomes 

    𝑙𝑛(𝑦 − 4) + 𝐶1 =
1

3
𝑥3 − 2𝑥 + 𝐶2 

The two constants can be combined into a common constant 𝐶 = 𝐶2 − 𝐶1.  

Now all that is left is getting an explicit expression for 𝑦 . To achieve this, we must further rearrange 

the equation. 

𝑙𝑛(𝑦 − 4) =
1

3
𝑥3 − 2𝑥 + 𝐶   ↔   𝑦 = 𝐶𝑒

1
3

𝑥3−2𝑥 + 4 

which is the solution to our problem. 

To show this, we can take the derivative of the solution we found 
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
𝐶𝑒

1
3

𝑥3−2𝑥 + 4 = (𝑥2 − 2)𝐶𝑒
1
3

𝑥3−2𝑥 

You might notice that the 𝐶𝑒
1

3
𝑥3−2𝑥 is very similar to our equation for 𝑦   

𝑦 = 𝐶𝑒
1
3

𝑥3−2𝑥 + 4  

From which we can find  

 𝑦 − 4 =  𝑦 = 𝐶𝑒
1
3

𝑥3−2𝑥  

And thus, we get  
𝑑𝑦

𝑑𝑥
= (𝑥2 − 2)(𝑦 − 4) 

Which is indeed equal to our initial differential equation.  

In general terms, the steps are as follows. For an equation of the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥)𝑔(𝑦),  

1. Separate the variables by rearranging the equation to 
𝑑𝑦

𝑔(𝑦)
= 𝑓(𝑥)𝑑𝑥 

2. Integrate both sides: ∫
𝑑𝑦

𝑔(𝑦)
= ∫ 𝑓(𝑥)𝑑𝑥. When doing the integration, don’t forget the 

integration constant 𝐶! 

3. Rearrange the equation to obtain an explicit expression for 𝑦  in terms of 𝑥 

4. Check your answer by taking the derivative 
𝑑𝑦

𝑑𝑥
 of your solution  



  
 

  

Note that sometimes it is not immediately obvious from looking at a DE that it is indeed separable. 

For example, take a look at the following equation:  
𝑑𝑦

𝑑𝑥
= 𝑦𝑥2 − 2𝑦 − 4𝑥2 + 8 

It is not immediately clear that this is a separable differential equation. However, this is actually the 

same as our example equation: 
𝑑𝑦

𝑑𝑥
= (𝑥2 − 2)(𝑦 − 4) 

 

You can check this yourself by multiplying 𝑥2 − 2 with 𝑦 − 4. Hence, sometimes it is necessary to 

bring the DE into a form where the right-hand side is not expanded i.e., find out the two functions 

𝑓(𝑥) and 𝑔(𝑥) which this equation is a product of. Often this can be done by isolating common 

factors from the terms.  

Exponential Growth 
There is a special subtype of separable differential equations which deserves a bit more attention, as 

its result is a very common and widely used expression. It models simple growth or decay and can 

even be used for determining the age of fossils by a method known as carbon dating. 

The form of this DE is as follows: 

𝑑𝑦

𝑑𝑥
= α𝑦 

Notice that this is a differential equation of the same form as the one we solved in the introduction 

to differential equations in this reader: 

𝑑𝑦

𝑑𝑡
= 1.6𝑦(𝑡) = 𝑎𝑦(𝑡) 

This is a special case of separable differential equations, with 𝑓(𝑥) = α, which is a constant, and 

𝑔(𝑦) = 𝑦. Often, we will use the variables 𝑁, λ and 𝑡 when writing such an equation: 

𝑑𝑁

𝑑𝑡
= λ𝑁 

𝑁 usually represents a quantity (of mass, objects, bacteria, radioactive material, substrate, …), 𝑡 is 

the measure of time and λ is the exponential growth constant.  As you might have already guessed by 

now, the solution to this equation is a positive exponential  

𝑁(𝑡) = 𝑁0𝑒λ𝑡 

We will derive the result below.  

Other than exponential growth, we can also have exponential decay. In that case we write  

𝑑𝑁

𝑑𝑡
= −λ𝑁 

and λ becomes the exponential decay constant. The expression for exponential decay is very similar 

to that for exponential growth  

𝑁(𝑡) = 𝑁0𝑒−𝜆𝑡 

 



  
 

  

To solve the above equation, we proceed as usual when it comes to separable differential equations.  

We start with  

𝑑𝑦

𝑑𝑥
= α𝑦 

Which can be rearranged by separation of variables to get   

𝑑𝑦

𝑦
= α𝑑𝑥 

The next step is to integrate both sides of this equation 

∫
𝑑𝑦

𝑦
= ∫ α𝑑𝑥 

to 

𝑙𝑛(𝑦) = α𝑥 + 𝐶 

Which, in a final step, we can rearrange to an expression for 𝑦 

𝑦 = 𝐶𝑒α𝑥 

You can check for yourself that this result passes the derivative test. For exponential decay, the 

derivation is almost identical to that of exponential growth, except for a sign: 

𝑦 = 𝐶𝑒−𝛼𝑥 

Uses of exponential growth and decay models 
Exponential growth and decay models have many uses in describing the systems around us. For 

example, the decay of Carbon 14 in a dead organism can be used to calculate the time of death and 

hence the age of many archaeological findings. Exponential decay of radioactive elements is used to 

predict the radiation levels we can expect to find in Chernobyl at any future timepoint (given there 

will not be any additional new sources of radiation), and the rate of decay of drugs in the blood 

system is helpful for determining the intervals at which medication should be taken.  

All of this is made possible by the fact that for exponential models, the time it takes to double/halve 

the amount of stuff we are measuring is independent of the initial quantity present. What does this 

mean? Let’s look at a linear and an exponential model of the breaking down of drugs in the 

bloodstream. 

It is thought that unlike most substances, alcohol follows a linear decay model as above a certain 

amount of ingestion, all enzymes necessary for breaking down bacteria are occupied and thus the 

destruction rate of ethanol molecules cannot increase proportionally to the amount of alcohol going 

around in your blood. Instead, alcohol is thought to be removed at an average rate of 3.3𝑚𝑚𝑜𝑙ℎ−1, 

although this varies widely depending on the individual2. We can therefore model the rate of alcohol 

decline in the blood via the following differential equation: 

𝑑𝑁(𝑡)

𝑑𝑡
= −3.3𝑚𝑚𝑜𝑙/ℎ 

 
2 Paton A. (2005). Alcohol in the body. BMJ (Clinical research ed.), 330(7482), 85–87. 
https://doi.org/10.1136/bmj.330.7482.85 



  
 

  

whose solution is a linear equation 

𝑁(𝑡) = 𝑁0 − 3.3𝑚𝑚𝑜𝑙/ℎ ⋅ 𝑡 

where 𝑁0 is the initial amount of alcohol molecules in 𝑚𝑚𝑜𝑙, 𝑡 is the time since consumption in 

hours, and 𝑁(𝑡) is the number of molecules after 𝑡 hours. We can now try and calculate how long it 

takes for the amount of alcohol to drop to half of its initial value 𝑁(𝑡) =
𝑁0

2
 

𝑁(𝑡) =
𝑁0

2
= 𝑁0 − 3.3𝑚𝑚𝑜𝑙/ℎ ⋅ 𝑡 ↔ 𝑡 =

𝑁0

2 ⋅ 3.3𝑚𝑚𝑜𝑙/ℎ
 

As you can see, this timeframe will always depend on the initial amount of alcohol present, and 

hence it is not possible for us to make a general statement on the half-life (the time it takes for a 

substance to decrease by 50%) of alcohol. 

In contrast, let’s consider another commonly consumed drug: caffeine. The decay of caffeine can be 

modelled using exponential decay with a decay constant of approximately λ =  0.14.3 

𝑑𝑁(𝑡)

𝑑𝑡
= −0.14𝑁(𝑡) 

which can be solved to produce the exponential decay model 

N(𝑡) = 𝑁0𝑒−0.14/ℎ⋅𝑡 

As we did in the case of alcohol, let’s look at the time it takes to arrive at 𝑁(𝑡) =
𝑁0

2
. We get the 

expression  

𝑁(𝑡) =
𝑁0

2
= 𝑁0𝑒−0.14/ℎ⋅𝑡 ↔ 𝑡 = −𝑙𝑛 (

1

2
) ⋅

1

0.14/ℎ
=

𝑙𝑛(2)

0.14/ℎ
≈ 5ℎ 

From this, we see that the half-life of caffeine does not depend on our initial value 𝑁0 as in the case 

of alcohol. This is a crucial property of exponential decay models and stems from the fact that the 

rate of decay (or growth) is proportional to the amount of stuff present, unlike the constant rate we 

saw for alcohol above.  

The fact that the half-life is independent of the initial value is a often utilized to characterize and/or 

describe the decay of radioactive elements and drugs. We also use the duplication time (the time 

until 𝑁(𝑡) = 2𝑁0) for growth of bacterial populations. The half-life can also be used interchangeably 

with  λ, as one value can be extrapolated from the other via rearranging the model equation to give 

the required parameter (as we did above). 

𝑡1/2 =
𝑙𝑛(2)

λ
 

Small assignment 

You can try this for yourself! If you know your E. coli bacteria have a growth constant of λ =  0.37 in 

the conditions present in your laboratory, you can try to calculate the time it takes for your 

population to double in size.4 

 
3 Institute, O. M., Food, A. N. B., & Committee, O. M. N. R. (2002). Caffeine for the sustainment of mental task 
performance: Formulations for military operations. National Academies Press. 
4 The solution is 𝑡 = 𝑙𝑛(2) ⋅

1

0.37
≈ 1.87ℎ 



  
 

  

Validating results and determining constants  
We will finalise this section on differential equations with a short discussion on the verification of our 

solution to a DE problem. The easiest way to ensure you have found a correct solution is by checking 

whether this solution satisfies the DE in question. Going back to an old example, we found a solution 

𝑦 = 𝐶𝑒
1
3

𝑥3−2𝑥 + 4 

for the equation 

𝑑𝑦

𝑑𝑥
= (𝑥2 − 2)(𝑦 − 4) 

and verified this by taking the derivative of our solution  

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
𝐶𝑒

1
3

𝑥3−2𝑥 + 4 = (𝑥2 − 2)𝐶𝑒
1
3

𝑥3−2𝑥 = (𝑥2 − 2)(𝑦 + 4) 

In general, it is good practice to always check your solution in this manner. 

However, to stress the usefulness of this verification method, we will now look at an example where 

we can actually use this to our advantage in solving a rather complex differential equation. Let’s 

consider 

𝑑2𝑦

𝑑𝑥2
= 9𝑦 

Here we encounter something we have not yet discussed: A second order differential equation, 

named after the second order derivative on the left-hand side of this equality, 
𝑑2𝑦

𝑑𝑥2. In general, higher 

order differential equations tend to be harder to solve than lower order DEs. Nonetheless, we can 

use some educated guesses to find a precise solution to this equation. 

As you might have noticed, the general form of this equation 

𝑑2𝑦

𝑑𝑥2
= δ𝑦 

resembles the differential equation for exponential growth 

𝑑𝑦

𝑑𝑥
= 𝛼𝑦 

From this, we can make the assumption that their solutions might take a similar form. We know that 

the solution for the exponential growth DE is as follows:  

𝑦 = 𝐶𝑒𝛼𝑥 

To verify this assumption and further specify the parameter α, let us take the second order derivate 

of the assumed solution for 𝑦 

𝑑𝑦2

𝑑𝑥2
= α2𝐶𝑒α𝑥 

and use this to get a specific solution for our problem: 

𝑑2𝑦

𝑑𝑥2
= 9𝑦 →  𝛼2𝐶𝑒𝛼𝑥   =  9𝐶𝑒𝛼𝑥 

 

Stefan van Alen
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From which we deduce 

α2 = 9 → α = ±3 

As you can see, we were able to find a correct solution to the given DE by first guessing the form of 

the answer and then using this guess to determine unknown constants. This is a useful method for 

solving some differential equations and you will encounter this further during your studies. For now, 

however, it suffices to realise that this is a valid method of finding a solution and can be a useful way 

to verify your answer. 

  

Exercises 
1. Differential Equations with y-independent right-hand side 

a. 
𝑑𝑦

𝑑𝑥
= 𝑥3 

b. 
𝑑𝑦

𝑑𝑥
= 3𝑒2𝑥 

c. 
𝑑𝑦

𝑑𝑥
=  

1

12𝑥
 

d. 
𝑑𝑦

𝑑𝑥
= 3𝑥2 + 5 with 𝑦(0) = 5 

e. 
𝑑𝑦

𝑑𝑥
=

1

𝑥2 + 2𝑥 with 𝑦(1) = 2 

2. Separable Differential equations 

a. 
𝑑𝑦

𝑑𝑥
= −16𝑦𝑥 

b. 
𝑑𝑦

𝑑𝑥
= 6𝑥2𝑦 + 𝑥𝑦 with 𝑦(0) = 8 

c. 
𝑑𝑦

𝑑𝑥
= (3𝑥2 − 5)(𝑦 + 3) with 𝑦(0) = 6 

d. 
𝑑𝑦

𝑑𝑥
=

𝑥+2

2𝑦
 

3. Exponential Growth/Decay 

a. Give the exponential growth function for a molecule which decays at a rate of 

 
𝑑𝑁

𝑑𝑡
= −6𝑁 (𝑡 in hours, 𝑁 in 𝑚𝑚𝑜𝑙) 

b. Give the timeframe it takes for 
1

3
 of the molecules present in 3a to decay. 

c. Imagine a drug that follows exponential decay. 12 hours after the peak blood 

concentration is at 40%. What is the decay constant λ of this drug? 

4. Validating results and determining constants 

a. Verify your solutions to exercises 1 and 2 by taking the first derivatives. 

b. 
𝑑2𝑦

𝑑𝑥2 = 25𝑦 

c. 
𝑑2𝑦

𝑑𝑥2 = 5
𝑑𝑦

𝑑𝑥
 

d. 
𝑑𝑦

𝑑𝑥
= 5𝑥 + 3 assuming 𝑦 is of the form 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 
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II. Chemistry: Reaction Kinetics 

Enzymes and the Michaelis-Menten Equation 
Life is sustained by the continued action of millions of chemical reactions in living organisms. For 

example, carbohydrates you ingest has to be broken down and transformed into glucose, before the 

glucose can be used in the metabolic pathway called glycolysis which, as a by-product, provides the 

molecules ATP and NADH. These two are often described as the energy currency of our bodies and 

are vital for most other bodily reactions which keep you alive. 

In the body, chemical reactions usually have a half-life of less than 1s. This rapid rate of conversion 

from one molecule into another is only possible with the use of enzymes. Enzymes are a class of 

molecules known as catalysators, which speed up a reaction without being consumed in the 

reactions – this means that the enzyme is left unchanged and can continue on to react again.  

Without enzymes, some reactions would have a half-life of up to 2.3 billion years5 (!) or possibly 

longer - as you can probably imagine, life as we know it would not be possible if it were based on 

such slow reactions. 

The rate of reactions can be altered which sometimes plays a role in, for example, disease, drug, or 

genetic manipulation. Therefore, as a Nanobiologist, it is important to know more about these 

processes. 

Enzymatic reaction equation 
Enzymatic reactions usually proceed as follows: 

E  +  S 
𝑘1
⇌

𝑘−1

ES 
𝑘2
→ 𝐸  +  P 

 

The enzyme 𝐸 and substrate 𝑆 combine into an intermediary enzyme-substrate complex 𝐸𝑆, also 

known as the transition state of the reaction. This complex rapidly dissociates either back into its 

constituents 𝐸 and 𝑆, or into the enzyme and the product 𝑃. In general, first step of an enzymatic 

reaction tends to be a lot faster than the product-producing step, and so we can assume that the 

reaction  𝐸 +  𝑆 ⇄  𝐸𝑆 is in steady state – that is, the same amount of 𝐸𝑆 dissociates as is produced  

at any moment in time, and thus the reaction rate 
𝑑𝐸𝑆

𝑑𝑡
= 0. 

 
5 R. R. Wolfenden. (2001). The depth of chemical time and the power of enzymes as catalysts. Accounts of 

Chemical Research 34(12):938-945. 

https://doi-org.tudelft.idm.oclc.org/10.1021/ar000058i 

Figure 1 
Graphical representation of an enzyme-
substrate reaction. The substrate (orange) 
binds to the enzyme (blue) via a reversible 
reaction to form the enzyme-substrate 
complex. A unidirectional reaction then 
occurs to form the product (red). 

 

https://doi-org.tudelft.idm.oclc.org/10.1021/ar000058i


  
 

  

This simple reaction model which holds for most enzymatic reactions allows us to find a universally 

applicable description for the reaction velocity 
𝑑𝑃

𝑑𝑡
= 𝑉0 of such processes, called the Michaelis-

Menten equation. 

Michaelis Menten Equation 
The Michaelis-Menten equation can be derived from above enzymatic reaction model and is written 

as follows: 

𝑉0 =
𝑘2[𝐸]𝑇[𝑆]

𝐾𝑀 + [𝑆]
 

with 𝑉0 the reaction velocity, 𝑘2 the rate constant for the reaction ([𝐸𝑆] ⟶ [𝐸] + [𝑃]), [𝐸]𝑇 the 

total enzyme concentration ([𝐸]𝑇 = [𝐸] + [𝐸𝑆]),  [𝑆] the substrate concentration and finally 𝐾𝑀, the 

Michaelis constant. 

Unfortunately, the derivation of this equation is a bit too lengthy and will not be necessary 

knowledge for the exam, but feel free to look up online resources if you feel like this will aid your 

understanding of the equation. Instead, we will focus on the interpretation and use of the MM-

equation. 

Graphical representation of the Michaelis-Menten equation 
Let us now consider what the Michaelis-Menten equation actually represents. On the left-hand side, 

we have the rate of product formation, or the reaction velocity 𝑉0. On the right-hand side, we can 

see that this velocity depends on the (total) concentration of the enzyme and the substrate, as well 

as the rate constant 𝑘2 and the Michaelis-constant 𝐾𝑀. Generally, for a certain enzymatic reaction 

𝑘2and 𝐾𝑀 are fixed quantities and do not vary during the reaction. Similarly, as no enzyme is actually 

used up in the reaction process, [𝐸]𝑇 is constant as well. Hence this means that usually 𝑉0 will be 

analysed as a function of [𝑆], which is indeed a quantity which varies during the reaction as substrate 

gets used up and thus decreases as the reaction proceeds.  

Plotting 𝑉0 against [𝑆], we then get our characteristic curve for the MM-equation: 

 

 

As you can see, as the concentration increases, reaction rate 𝑉0 approaches a constant value, in this 

case 2
𝑚𝑚𝑜𝑙

𝑠
. This value is the maximal reaction velocity 𝑉𝑚𝑎𝑥 and is equal to 𝑘2[𝐸]𝑇.  

𝑉𝑚𝑎𝑥 = 𝑘2[𝐸]𝑇 

Figure 2: Graph of the Michaelis Menten 
curve. On the x axis is the substrate 
concentration in mM and on the y axis there 
is the reaction rate in mM/2. 
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Small assignment: 

Show that 𝑉𝑚𝑎𝑥 is equal to 𝑘2[𝐸]𝑇 by taking the limit 𝑉𝑚𝑎𝑥 = 𝑙𝑖𝑚
[𝑆]→∞

𝑘2[𝐸]𝑇[𝑆]

𝐾𝑀+[𝑆]
.  

 

This now allows for a different notation of the MM-equation:  

 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 

 

We can continue by asking at which point 𝑉0 =
𝑉𝑚𝑎𝑥

2
. Inserting 𝑉0 =

𝑉𝑚𝑎𝑥

2
 into the MM equation, we 

will find a relation between 𝐾𝑀 and [𝑆] which has to hold when we reach half the maximal reaction 

velocity.  

Small assignment: 

Try finding this relation between 𝐾𝑀 and [𝑆] for yourself by doing the required rearrangements. 

 

You will find that in this case, 𝐾𝑀 = [𝑆]. Indeed, inserting this into the MM-equation 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
=

𝑉𝑚𝑎𝑥[𝑆]

2[𝑆]
=

𝑉𝑚𝑎𝑥

2
 

which verifies our result. 

This relation, 𝐾𝑀 = [𝑆] when 𝑉0 =
𝑉𝑚𝑎𝑥

2
 is a vital property of the Michaelis-constant: 𝐾𝑀represents 

the value of the substrate concentration at which we reach half the maximal reaction velocity. We 

can thus graphically find the 𝐾𝑀 by drawing a horizontal line for 𝑉0 =
𝑉𝑚𝑎𝑥

2
 and reading of the 

concentration for this point (this is shown in figure 3). The value of 𝐾𝑀 can thus function as an 

important measure for the reaction dynamics. The smaller 𝐾𝑀, the steeper the MM-curve, the more 

rapid the rate of production increases. If you take a look at the derivation, you will also find that the 

𝐾𝑀 gives a specific relationship between the rate constants of  

E  +  S 
𝑘1
⇌

𝑘−1

ES 
𝑘2
→ 𝐸  +  P 

We define  

𝐾𝑀 ≡
𝑘−1 + 𝑘2

𝑘1
 

V

max

V

max



  
 

  

where as before 𝑘2 is the rate constant of the forward reaction ([𝐸𝑆] → [𝐸] + [𝑃]), and similarly 𝑘1 and 

𝑘−1 are the forward and backward rate constants of [𝐸] + [𝑆] → [𝐸𝑆] respectively.  

Variations on the Michaelis-Menten Equation 

Reaction efficiency 

When we look at the MM-plot again, we see that the change in reaction velocity is lower the more 

we increase the concentration of the substrate. What could be the reason for this? The answer is 

enzyme saturation: When the substrate concentration is low, there are a lot of free enzymes around 

to take care of all the substrate molecules. Thus, the substrate and enzyme are very likely to bump 

into each other and bind, starting the conversion (fig 4). In this case, the more substrate there is, the 

more it can be turned into product in a given timeframe – hence the conversion speed is determined 

and limited by the amount of substrate present. 

However, as the substrate concentration increases, the number of free enzymes (enzymes which are 

not yet bound to a substrate) decreases, and the chance for a substrate to bump into and bind with 

an enzyme becomes lower. In this case, the number of enzymes limits the reaction velocity instead of 

the amount of substrate. Therefore, adding more substrate will not significantly increase the reaction 

velocity. Both situations are visualized in figure 4.  

Now let us take a closer look at the reaction when 𝑆 ≪ 𝐾𝑀. This corresponds to the left-hand side of 
the graph, where the slope of 𝑉0 is relatively high. Mathematically, we can write 
 

𝑉0 =
𝑘2[𝐸]𝑇[𝑆]

𝐾𝑀 + [𝑆]
 ≈  𝑉0 =

𝑘2[𝐸]𝑇[𝑆]

𝐾𝑀
 

 

Figure 4 
Visual representation of the enzymes and substrate in a reaction. When [𝑆] ≪ 𝐾_𝑀, the chance 
for a free substrate and free enzyme to meet is large, and thus adding more substrate increases 
reaction velocity. Conversely, when the number of free enzymes is low, this chance of a free 
substrate and enzyme meeting is also low. Thus, increasing the substrate concentration only 
marginally increases reaction velocity. This is called enzyme saturation. 

Figure 3 
Michaelis-Menten reaction kinetics plot for two 
different reactions with 𝑉𝑚𝑎𝑥 = 4 (orange) and 
𝑉𝑚𝑎𝑥 = 2 (blue) respectively. The  𝐾𝑀 concentration 
and reaction velocity 𝑉0 = 𝑉𝑚𝑎𝑥/2 are marked for 
both graphs using dashed lines in pink and dark blue.  



  
 

  

We can see that for constant substrate and enzyme concentrations, 𝑉0 is determined by the 

coefficient 
𝑘2

𝐾𝑀
. The value of this coefficient is a measure for the efficiency of this enzyme-substrate 

reaction. We call an enzyme efficient if it is able to convert a substantial proportion of substrate into 

product. The higher 
𝑘2

𝐾𝑀
, the more efficient an enzyme is – the higher the proportion of substrate 

converted.  

When is catalytic efficiency high? To answer this question, we must look at when 
𝑘2

𝐾𝑀
 will be highest. 

We write 
𝑘2

𝐾𝑀
=

𝑘1𝑘2

𝑘−1 + 𝑘2
 

using the definition of 𝐾𝑀. Now assume the reaction 𝐸𝑆 ⟶
𝑘2

𝐸 + 𝑃 to be much faster than the 

reverse of the enzyme-substrate forming reaction, 𝐸𝑆 ⟶
𝑘−1

𝐸 + 𝑆, which is generally the case in 
enzymatic reactions. This will mean that 𝑘2 ≫ 𝑘−1. We can use this to rewrite  
 

𝑘2

𝐾𝑀
=

𝑘1𝑘2

𝑘−1 + 𝑘2
≈

𝑘1𝑘2

𝑘2
= 𝑘1 

Hence, in this case the reaction velocity is entirely dominated by the reaction rate of the enzyme-

substrate complex formation, 𝐸 + 𝑆 ⟶
𝑘1

𝐸𝑆. Since the formation rate of 𝐸𝑆 is dependent on the 

concentrations of 𝐸 and 𝑆 respectively (
𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘1[𝑆][𝐸]), it follows that the idea of a higher 

substrate concentration leading to a faster reaction velocity indeed holds, assuming our initial 

conditions still hold as well.  

Enzyme Inhibition – Competitive 
Unfortunately, the Michaelis-Menten equation is not a complete description of every enzymatic 

process in nature. An example of this would be the case when substrate is not the only molecule that 

can bind the active site of the enzyme. A compound which can bind the enzyme and prevent it from 

reacting with the substrate is called an inhibitor. These come in two types: inhibitors who bind the 

enzyme at the same site as the substrate are termed competitive; if an inhibitor binds the enzyme at 

a different site as the substrate, it is uncompetitive. There is actually another type of inhibition called 

non-competitive, but this will not be of interest to us in this reader. Depending on the presence and 

type of inhibitor, the corresponding MM-Equation has to be adjusted. 

 

 

 

 

 

 

 

 

 

 



  
 

  

Let’s first consider the event of a competitive inhibitor being added to our substrate and enzyme 

mixture (figure 5). 

Then the enzyme has two possible reaction pathways: 

1. 𝐸 + 𝐼
𝑘−𝐼
⇌

𝑘𝐼

𝐸𝐼 

2. 𝐸 + 𝑆
𝑘−1
⇌

𝑘1

𝐸𝑆 ⟶
𝑘2

 𝐸 +  𝑃 

 

The second equation we already know, as it corresponds to the product formation equation we have 

discussed above. The first equation is new, and it describes the formation of an enzyme-inhibitor 

complex by the enzyme and inhibitor binding.  

The effect this has on product formation is that there will be less enzyme available to bind the 

substrate. This lowered enzyme concentration depends on the rate constant 𝐾𝐼 of the enzyme-

inhibitor reaction and the inhibitor concentration [𝐼], and is represented by the constant α in a 

modified Michaelis-Menten equation: 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝛼𝐾𝑀 + [𝑆]
 

Where  α = 1 +
[𝐼]

𝐾𝐼
 and 𝐾𝐼 =

[𝐸][𝐼]

[𝐸𝐼]
.  

Now let us visualize what the effect of competitive inhibition on the reaction velocity: 

Figure 5 
Graphic representation of competitive 
inhibition. The substrate (orange) and 
inhibitor (purple) compete for the 
active site of the enzyme (blue) to 
either form an enzyme-inhibitor or an 
enzyme substrate complex. The latter 
then dissociates into enzyme and 
product (red). 



  
 

  

As we can see, competitive inhibition greatly slows the reaction rate for lower substrate 

concentrations. The 𝐾𝑀 concentration, or the value of [𝑆] for which V0 =
Vmax

2
 , of the inhibited 

reaction thus becomes higher than that of the uninhibited one. In this case, the uninhibited 𝐾𝑀 is 

[𝑆] = 1, while the new 𝐾𝑀𝐼 = α𝐾𝑀 = 2.5. However, it is important to note that for competitive 

inhibition, the 𝑉𝑚𝑎𝑥 does not change and for high enough substrate concentrations both the 

inhibited and the uninhibited reactions proceed at equal speed.  

A very common form of competitive inhibition is product inhibition. This occurs when the product of 

a reaction functions as the inhibitor for that reaction. An example of this is the cholesterol pathway 

in humans: the presence of cholesterol in the blood binds to the enzyme promoting cholesterol 

formation in the liver, which reduces the number of enzymes available for producing new 

cholesterol. Thus, this mechanism is part of a negative feedback loop, where the more cholesterol is 

present, the less it is being produced. These kind of regulation loops are often used in biology, and 

you will learn much more about them during your studies. 

Enzyme inhibition – Uncompetitive 
Another type of inhibition is when the inhibitor does not bind the enzyme at the same site as the 

substrate. This kind of inhibition is most commonly due to inhibitors binding the enzyme-substrate 

complex before the product is formed. Such binding events then prevent product formation in itself 

until the complex dissociates. 

In equations 

1. 𝐸 + 𝑆
𝑘−1
⇌

𝑘1

𝐸𝑆
𝑘−𝐼′
⇌
𝑘𝐼′

 𝐸𝑆𝐼 

2. 𝐸 + 𝑆
𝑘−1
⇌

𝑘1

𝐸𝑆 ⟶
𝑘2

 𝐸 +  𝑃 

Figure 6 
Graph of the Michaelis-Menten Equation for competitive inhibition (orange) and 

no inhibition (blue). The reaction rate of  𝑉0 =
𝑉𝑚𝑎𝑥

2
 is marked in green. 

T



  
 

  

where the first case results in inhibition.  

 

For uncompetitive inhibition, we write the inhibition rate constant 𝐾𝐼
′ to distinguish it from 

competitive inhibition. Again, we can accommodate for this in our Michaelis-Menten Equation by 

adding constant α′ to one of our terms: 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + α′[𝑆]
 

With  α′ = 1 +
[𝐼]

𝐾𝐼
′ and 𝐾𝐼

′ =
[𝐸𝑆][𝐼]

[𝐸𝑆𝐼]
.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 
Schematic of uncompetitive 
enzyme inhibition. Substrate 
(orange) binds to enzyme (blue) to 
create the enzyme-substrate 
complex, which can be either 
bound by an inhibitor molecule 
(green) or dissociate into enzyme 
and product (red). 



  
 

  

The modified Michaelis-Menten graph is shown in figure 8. 

 

The big difference we can observe to both the uninhibited as well as the competitive inhibition cases 

is that the effective 𝑉𝑚𝑎𝑥 and 𝐾𝑀both decrease. The change in 𝑉𝑚𝑎𝑥 is due to uncompetitive 

inhibition decreasing the effective amount of substrate that can be turned into product, as some of it 

will be bound by the inactivated enzymes. 

Combining all possible reaction profiles into one plot we get figure 9:  

Figure 8 
Michaelis-Menten kinetics plotted for uncompetitive (purple) and no inhibition 
(blue). 

Figure 9 
Plotting the reaction velocity profiles for the uninhibited reaction, competitive 
inhibition (𝛼 = 2) and uncompetitive inhibition (𝛼′ = 2) 



  
 

  

Exercises 

1. What is the catalytic efficiency if 
𝑘2

𝑘2+𝑘−1
~1 ? 

2. Which parameter(s) are most affected by competitive and uncompetitive inhibition 

respectively? Explain in 30 words and/or make a sketch. 

3. For the uninhibited MM-Equation, how does the reaction velocity change when we increase 

the following parameter and keep all others constant? 

a. 𝐾𝑚 

b. [𝐸]𝑡 

c. 𝑘2 

4. Do we have competitive inhibition if [𝐼] = 𝐾𝐼 and [𝑆] ≫ 2𝐾𝑀? 

5. Calculate the 𝐾𝑀 for an enzyme with 𝑉0 = 6𝜇𝑀𝑠−1, 𝑉𝑚𝑎𝑥 = 10𝜇𝑀𝑠−1 and [𝑆] = 300𝜇𝑀 

6. Can uncompetitive inhibition be overcome by adding more substrate? 

7. Calculate the total substrate concentration you need for a reaction at 85% of the maximal 

reaction velocity for 𝐾𝑀 = 20𝜇𝑀  

8. Calculate the total substrate concentration you need for a reaction at 85% of the maximal 

reaction velocity for 𝐾𝑀 = 20𝜇𝑀 and competitive inhibition with [𝐼] = 0.1𝜇𝑀 and 𝐾𝐼 =

0.4𝜇𝑀 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

  

III. Physics: Diffusion 

The existence of atoms 
 Humanity has always wondered about the fundamental elements of nature and how they 

behave. There have been many philosophers around the globe who imagined the universe to consist 

of tiny, indivisible particles, 'atoms' as the ancient Greeks called them, the smallest elements of 

matter. However, in the 19th century this viewpoint was not very popular in the West. In the early 

1800's, the botanist Robert Brown observed under a microscope that tiny pollen particles in solution 

showed a very irregular, jittery motion. First thinking that it could be the 'vis viva', the 'life force', he 

repeated the experiments with lifeless dust particles and observed the same type of motion. Almost 

a century later, this type of motion contributed to a revolution in science. Jean Perrin measured the 

movement of small solutes and discovered that it was well described by an equation from a paper by 

a young Albert Einstein. Twenty years later, Perrin was awarded the Nobel Prize for his contributions 

to "the discontinuous structure of matter". His experiment and others suddenly revealed that the 

atomistic world view is actually very useful, and nowadays it seems impossible to detach from it. 

 

The diffusion equation 
 The irregular motion of molecules in solution is well described by the 'random walk' (a 

mathematical description that we will skip for now), and the spreading of molecules in solution obeys 

the diffusion equation. This equation does not only describe the spreading of molecules, but also the 

spreading of heat, the shape of flexible polymers, genetic drift, the average motion of motile 

bacteria, and, among many other applications, even certain aspects of financial markets. In one 

dimension, it reads 

 

𝜕𝜌

𝜕𝑡
= 𝐷

𝜕2𝜌

𝜕𝑥2 

 

with 𝜌(𝑥, 𝑡) (the Greek letter 'rho') indicating the concentration of a solute at position 𝑥 and time 𝑡, 

and 𝐷 the diffusion constant. One can see from the equation that the dimension of 𝐷 is area per 

time. If one would release a solute at 𝑥 = 0 at 𝑡 = 0 (for example by injecting it there at 𝑡 = 0) the 

solute will spread out over time, according to the diffusion equation. Under those conditions, the 

solution of the equation is: 

 

𝜌(𝑥, 𝑡) =
𝑁

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡 

with 𝑁 the total number of particles.  

 

 

 

 



  
 

  

Figure 10 shows the solution for several values of 𝑡 and 𝐷 = 1 ∙ 10−9 m2/s.  

 

 

For small particles in a fluid, the Stokes-Einstein equation relates the diffusion constant to the 

viscosity of the fluid 

 

𝐷 =
𝑘B𝑇

6𝜋𝜂𝑟
 

 

. (Actually, this equation is only valid if the "Reynolds number" is small, but you can believe for now 

that this is certainly the case for microscopic particles in water). 

In the equation 𝑘B is the Boltzmann constant, T the temperature in Kelvin, 𝜂 the viscosity of the fluid, 

and 𝑟 the radius of the particles. For simple ions in water, the diffusion constant is of the order of 

10−9 m2/s. 

 

Drag on a particle 
The Stokes-Einstein constant can also give us information about the drag a particle experiences as it 

moves around in its environment. Generally, the drag force Fd acting on an object swimming, or 

drifting around in a medium can be described as 

 

𝐹𝑑 = −γ𝑣 

Where  

γ =  6π𝜂𝑅 

 

Figure 10 The concentration of a solute as a function of position, 
at different times 

*



  
 

  

And the minus sign indicates that the force is opposite to the motion of the particle, 𝑣 is the velocity 

of the particle and γ is known as the drag coefficient, a constant which relates the two previously 

described parameters. This drag coefficient is related to the Diffusion coefficient D via the Einstein 

relation: 

 

γ𝐷 = 𝑘𝐵𝑇 

 

Thus, experimental measurements of the drag on a particle gives us an information about its 

diffusion coefficient.  

 

Average position and variance of a diffusing particle 
 The diffusion equation can also be used to describe the probability of finding a diffusing 

particle in a neighborhood of position 𝑥 at time 𝑡. If the particle is released at 𝑥 = 0 at 𝑡 = 0, this 

probability density function is 

𝑃(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡 

The mean of the position at time 𝑡 is then 

〈𝑥〉 = ∫ 𝑥𝑃(𝑥, 𝑡)𝑑𝑥

∞

−∞

 

and without doing any math, one can conclude that it should be zero at all times. The function 𝑃 is 

even (symmetric around 𝑥 = 0), and 𝑥 is odd (antisymmetric around 𝑥 = 0), so the integral should 

be zero. Another way of reasoning is that the average should be zero, because the particle has no 

preference of direction. It diffuses to the left and to the right with equal probability. 

However, the variance of the probability density function is  

〈𝑥2〉 = ∫ 𝑥2𝑃(𝑥, 𝑡)𝑑𝑥

∞

−∞

= 2𝐷𝑡 

The variance is a good measure for the 'width' of the curves  𝑑 = √〈𝑥2〉 = √2𝐷𝑡, which represents 

the part of space that a diffusing particle typically explores in a time 𝑡. Here we find a very peculiar 

law between the distance 𝑑 and time 𝑡, that 

𝑑~√𝑡 

(𝑑 is proportional to the square root of 𝑡) 

 

 

 

 

 



  
 

  

Thus, if it takes 1 ns to explore 5 nm, it would take 100 ns to explore 50 nm, about 1ms to explore 5 

𝜇m, and... about a day for 5 cm! Just to illustrate this scaling law, see how much effort it takes for a 

diffusing particle to explore space in the following table: 

 

𝑑 𝑡 

5 nm 1 ns  

5 𝜇m 1 ms 

5 mm 1000 s 

5 m 32 years 

 

Short distances are explored quickly, but it becomes increasingly more difficult to explore larger 

distances. Large organisms clearly cannot rely on diffusion alone to transport substances throughout 

the body, and even single cells make use of molecular motors and ion pumps to speed up the 

exchange and organisation of components. The same conclusion can be drawn about the spreading 

of heat, or the spreading of droplets in the air, or the exploration of motile bacteria. Without other 

principles like convection (air currents) or directed motion, this process does not get very far.  

However, as diffusion is very efficient when it comes to motion on small scales, it is an essential 

process for a multitude of biological systems. Many hormones and salts use diffusion to cross short 

distances, and in your lungs, oxygen diffuses from the alveoli into the bloodstream, where it is picked 

up by red blood cells to be distributed throughout your body. Conversely, insects do not have a way 

to actively carry oxygen through their body and rely solely on oxygen diffusion trough tubes in their 

body. Throughout prehistory, researchers have observed a correlation between oxygen 

concentration in the air and insect size – since oxygen supply to the insects’ inner body is limited by 

diffusion, lower oxygen concentration in the air cannot sustain large sizes. Thus, very high oxygen 

concentration in the air was one of the major reasons why insects in the Carboniferous and early 

Permian eras could grow so big! This is a prime example of how nanoscale phenomena can greatly 

influence life on earth. 

  

Exercises 
All these processes are assumed to take place at 300K (about room temperature). You may use that 

the viscosity of water η = 1mPas and kBT = 4.14 · 10−21J. 

1. Assume a bacterium with 𝐷 = 5 ⋅ 10−12𝑚2𝑠−1. 
a. What is the radius of the bacterium? 
b. Give the value of the drag force it experiences while swimming at 25𝜇𝑚𝑠−1? 

2. Give a bacterium of 𝑟 =  500𝑛𝑚, which is accelerating at 100𝑛𝑚𝑠−2. How strong of a drag 
force does it experience after 10s, starting with v(0) = 0? Assume there is no drag: how far 
does it travel in 10s, if initial velocity is 15𝜇𝑚𝑠−1? 

3. Consider a molecule which has a diameter of 2𝜇𝑚. How far does it get in 100 years?  
4. Investigate: Which factors increase the distance travelled by diffusion when increased? Which 

decrease this distance? 
 
 
 



  
 

  

Solutions to the exercises 

Solutions to part I Mathematics: Differential Equations 
1. Differential equations with y-independent right-hand side 

a. 𝑦 =
1

4
𝑥4 + 𝐶 

𝑑𝑦

𝑑𝑥
= 𝑥3  ⟶ 𝑑y = 𝑥3𝑑𝑥 ⟶ ∫ 𝑑𝑦 = ∫ 𝑥3 𝑑𝑥 ⟶ 𝑦 =

1

4
x4 + 𝐶 

b. 𝑦 =
3

2
𝑒2𝑥 + 𝐶 

𝑑𝑦

𝑑𝑥
= 3𝑒2𝑥 ⟶ 𝑑𝑦 = 3𝑒2𝑥𝑑𝑥 ⟶ ∫ 𝑑𝑦 = ∫ 3𝑒2𝑥 𝑑𝑥 ⟶ 𝑦 =

3

2
𝑒2𝑥 + 𝐶 

c. 𝑦 =
1

12
𝑙𝑛(𝑥) + 𝐶 

𝑑𝑦

𝑑𝑥
=

1

12𝑥
⟶ 𝑑𝑦 =

1

12𝑥
𝑑𝑥 ⟶ ∫ 𝑑𝑦 = ∫

1

12𝑥
𝑑𝑥 ⟶ 𝑦 =

1

12
𝑙𝑛(𝑥) + 𝐶 

 

d. 𝑦 = x3 + 5𝑥 + 5 
𝑑𝑦

𝑑𝑥
= 3x2 + 5 ⟶ 𝑑𝑦 = (3x2 + 5)𝑑𝑥 ⟶ ∫ dy = ∫(3x2 + 5)dx ⟶ 𝑦

= x3 + 5𝑥 + 𝐶 

𝑦(0) = 5 = 03 + 5 ⋅ 0 + 𝐶 = 𝐶 ⟶ 𝐶 = 5 

e. 𝑦 = −
1

𝑥
+ 𝑥2 + 2 

𝑑𝑦

𝑑𝑥
=

1

𝑥2
+ 2𝑥 ⟶ 𝑑𝑦 = (

1

𝑥2
+ 2𝑥) 𝑑𝑥 ⟶ ∫ 𝑑𝑦 = ∫ (

1

𝑥2
+ 2𝑥) 𝑑𝑥 ⟶ ∫ 𝑑𝑦

= ∫
1

𝑥2
𝑑𝑥 + ∫ 2𝑥𝑑𝑥 ⟶ 𝑦 = −

1

𝑥
+ 𝑥2 + 𝐶 

𝑦(1) = −1 + 12 + 𝐶 = 2 ⟶ 𝐶 = 2 

2. Separable Differential equations 

a. 𝑦 = 𝐶𝑒−8𝑥2
 

𝑑𝑦

𝑑𝑥
= −16𝑦𝑥 ⟶

𝑑𝑦

𝑦
= −16𝑥𝑑𝑥 ⟶ ∫

𝑑𝑦

𝑦
= ∫ −16𝑥 𝑑𝑥 ⟶ 𝑙𝑛(𝑦) = −8𝑥2 + 𝐶

⟶ 𝑦 = 𝐶𝑒−8𝑥2
 

Note that just as in the reader text, we combined the constants of both sides of the 

equation into a common constant 𝐶 = 𝐶2 − 𝐶1 

 

b. 𝑦 = 8𝑒2𝑥3+
1

2
𝑥2

 
𝑑𝑦

𝑑𝑥
= 6𝑥2𝑦 + 𝑥𝑦 ⟶

𝑑𝑦

𝑑𝑥
= (6𝑥2 + 𝑥)𝑦 ⟶

𝑑𝑦

𝑦
= (6𝑥2 + 𝑥)𝑑𝑥 ⟶ ∫

𝑑𝑦

𝑦

= ∫(6𝑥2 + 𝑥)𝑑𝑥 ⟶ 𝑙𝑛(𝑦) = 2𝑥3 +
1

2
𝑥2 + 𝐶 ⟶ 𝑦 = 𝐶𝑒2𝑥3+

1
2

𝑥2

 

𝑦(0) = 𝐶𝑒2 ∙ 03+
1
2

 ∙ 02

= 8 ⟶ 𝐶 = 8 

c. 𝑦 = 9𝑒𝑥3−5𝑥 − 3 
𝑑𝑦

𝑑𝑥
= (3𝑥2 − 5)(𝑦 + 3) ⟶

𝑑𝑦

𝑦 + 3
= (3𝑥2 − 5)𝑑𝑥 ⟶ ∫

𝑑𝑦

𝑦 + 3
= ∫(3𝑥2 − 5)𝑑𝑥

⟶ 𝑙𝑛(|𝑦 + 3|) = 𝑥3 − 5𝑥 + 𝐶 ⟶ 𝑦 + 3 = 𝐶𝑒𝑥3−5𝑥 ⟶ 𝑦

= 𝐶𝑒𝑥3−5𝑥 − 3 

𝑦(0) = 𝐶𝑒03−5 ∙ 0 − 3 = 6 ⟶ 𝐶 − 3 = 6 ⟶ 𝐶 = 9 

d. 𝑦 = ±√
1

2
𝑥2 + 2𝑥 + 𝐶 



  
 

  

𝑑𝑦

𝑑𝑥
=

𝑥 + 2

2𝑦
⟶ 2𝑦𝑑𝑦 = (𝑥 + 2)𝑑𝑥 ⟶ ∫ 2𝑦 𝑑𝑦 = ∫(𝑥 + 2)𝑑𝑥 ⟶ 𝑦2

=
1

2
𝑥2 + 2𝑥 + 𝐶 ⟶ 𝑦 = ±√

1

2
𝑥2 + 2𝑥 + 𝐶 

3. Exponential Growth/Decay 

a. 𝑁(𝑡) = 𝑁0𝑒−6𝑡  
𝑑𝑁

𝑑𝑡
= −6𝑁 ⟶

𝑑𝑁

𝑁
= −6𝑑𝑡 ⟶ ∫

𝑑𝑁

𝑁
= ∫ −6 𝑑𝑡 ⟶ 𝑙𝑛(𝑁) = −6𝑡 + 𝑁0 ⟶ 𝑁(𝑡)

= 𝑁0𝑒−6𝑡 

b. 𝑡 ≈ 0.0676(ℎ) 

𝑁(𝑡) =
2

3
𝑁0 = 𝑁0𝑒−6𝑡 ⟶

2

3
= 𝑒−6𝑡 ⟶ 𝑙𝑛 (

2

3
) = −6𝑡 ⟶ 𝑡 = −

𝑙𝑛 (
2
3)

6
≈ 0.0676(ℎ) 

c.  𝜆 ≈  0.0764(ℎ−1) 

𝑁(12) = 0.4𝑁0 = 𝑁0e−12𝜆 ⟶ 𝑙𝑛(0.4) = −12𝜆 ⟶ 𝜆 = −
ln(0.4)

12
≈ 0.0764(h−1) 

4. Validating results and determining constants 

a. See whether the derivatives correspond to the differential equations given in the 

exercises. 

b. 𝑦 = 𝐶𝑒±5𝑥 

We assume the solution has the form 𝑦 = 𝐶𝑒α𝑥 (explanation in text) 

𝑦 = 𝐶𝑒α𝑥 ⟶
𝑑2𝑦

𝑑𝑥2
= 𝐶α2𝑒α𝑥 

𝑑2𝑦

𝑑𝑥2
= 25𝑦 ⟶ 𝐶α2𝑒𝛼𝑥

= 25𝐶𝑒𝛼𝑥 ⟶ α2 = 25 ⟶ 𝛼 = ±5 ⟶ 𝑦 = 𝐶𝑒±5𝑥 

c. 𝑦 = 𝐶𝑒5𝑥 

We assume the solution has the form 𝑦 = 𝐶𝑒𝛼𝑥 (explanation in text) 

𝑦 = 𝐶𝑒𝛼𝑥 ⟶
dy

dx
= 𝐶𝛼eαx ⟶

𝑑2𝑦

𝑑𝑥2
= 𝐶𝛼2𝑒𝛼𝑥 

𝑑2𝑦

𝑑𝑥2
= 5

𝑑𝑦

𝑑𝑥
 ⟶ 𝐶𝛼2𝑒𝛼𝑥  =  5𝐶𝛼𝑒𝛼𝑥  ⟶ 𝛼 =  5 ⟶ 𝑦 = 𝐶𝑒5𝑥 

d. 𝑦  =  
5

2
 𝑥2  +  3𝑥  +  𝐶 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ⟶
𝑑𝑦

𝑑𝑥
= 2𝑎𝑥 + 𝑏 

𝑑𝑦

𝑑𝑥
= 5𝑥 + 3  ⟶ 2𝑎𝑥 + 𝑏  =  5𝑥 + 3  ⟶ 𝑎  =  

5

2
  &  𝑏 = 3  ⟶ 𝑦 

=  
5

2
 𝑥2  +  3𝑥  +  𝐶 

 

 

 

 

 

 

 



  
 

  

Solutions to part II Chemistry: Reaction Kinetics 
1. Using 

𝑘2

𝐾𝑀
=

𝑘1𝑘2

𝑘−1 + 𝑘2
 

we see that the catalytic efficiency becomes equal to 𝑘1.  

2. See the corresponding sections in the reader 

3. We use 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 

meaning that the value 

a. Decreases 

b. Increases 

c. Increases 

4. No. In case of [𝐼] = 𝐾𝐼 we have 

𝛼 = 1 +
[𝐼]

𝐾𝐼
 =  2  

and thus 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

2𝐾𝑀 + [𝑆]
 

Now using [𝑆] ≫ 2𝐾𝑀 we get that 

𝑉0 ≈
𝑉𝑚𝑎𝑥[𝑆]

[𝑆]
 

which means the effect of the inhibition will not significantly affect the reaction. 

5. We can rearrange the Michaelis-Menten equation 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 

to 

𝐾𝑀 =
(𝑉𝑚𝑎𝑥)[𝑆]

𝑉0
− [S] 

Inserting the given values, we arrive at 𝐾𝑀 = 200𝜇𝑀 
6. No. As we can see from the graphical representation, uncompetitive inhibition alters the 

value of 𝑉𝑚𝑎𝑥. This occurs as some substrate will be bound by the inhibitors instead. If we 

increase our substrate concentration to be very large, we can increase the 𝑉𝑚𝑎𝑥 to be close 

to that of the uninhibited reaction, but it is impossible to fully overcome the effects of 

inhibition.  

7. We use the Michaelis-Menten equation 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 

First, realize that we can write 𝑉0 = 0.85𝑉𝑚𝑎𝑥 which reduces our equation to 

𝑉0

𝑉𝑚𝑎𝑥
= 0.85 =

[𝑆]

𝐾𝑀 + [𝑆]
 

We can now rearrange this 

[𝑆] =
0.85𝐾𝑀

1 − 0.85
 

Using our given value for 𝐾𝑀 we arrive at the solution [𝑆] = 113.33𝜇𝑀. 

8. This question can be answered very similarly to question 7, except we need to use the 

equation for competitive inhibition 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝛼𝐾𝑀 + [𝑆]
 



  
 

  

The difference here is that we have an altered 𝐾𝑀, so rearranged our equation becomes 

[𝑆] =
0.85 𝛼 𝐾𝑀

1 − 0.85
  

We can calculate 𝛼 by using the relation 

𝛼 = 1 +
[𝐼]

𝐾𝐼
= 1.25 

Now we can find our value for [𝑆] to be [𝑆] = 141.67𝜇𝑀 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

  

Solutions to part III Physics: Diffusion 
 

1. We can rearrange 

𝐷 =
𝑘B𝑇

6𝜋𝜂𝑟
→ 𝑟 =

𝑘B𝑇

6𝜋𝜂𝐷
  

Inserting the given values into the equation, we get 𝑟 = 43,9𝑛𝑚. For b, we use 

𝛾𝐷 = 𝑘𝐵𝑇 → 𝛾 =
𝑘𝐵𝑇

𝐷
= 8.28 ⋅ 10−10

𝐽𝑠

𝑚2
 

And insert this into 

𝐹 = −𝛾𝑣 

to obtain 𝐹 = −2.07 ⋅ 10−14𝑁. 

2. We can obtain the velocity from the acceleration via Newton’s laws of motion: 

𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡 = 𝑎(𝑡)𝑡 + 𝑣(0) 

where we have given that v(0)=0. We can then calculate 

𝑣(10) = 100𝑛𝑚𝑠−2 ⋅ 10𝑠 = 1𝜇𝑚𝑠−1 

The frictional drag coefficient is given by 

𝛾 = 6𝜋𝜂𝑟 = 9.425 ⋅ 10−9𝐽𝑠𝑚−2 

Then 𝐹 = −𝛾𝑣 =  −9.425 ⋅ 10−15𝑁. 

The distance travelled can again be found using Newton’s laws of motion and integrating in 

time from 0 to 10s. 

𝑥(10) = ∫ 𝑎(𝑡)𝑡 + 𝑣(0)𝑑𝑡
10

0

= [
𝑎𝑡2

2
+ 𝑣(0)𝑡]

0

10

= [
100𝑛𝑚𝑠−2  ⋅  𝑡2

2
+ 15μ𝑚 ⋅ 𝑡]

0

10

= 155𝜇𝑚 

3. We know that the average distance travelled 

〈𝑥2〉 = 2𝐷𝑡 → 𝑥 = √(2𝐷𝑡)  

100 years has 60 ⋅ 60 ⋅ 24 ⋅ 365 ⋅ 100 = 3.1536 ⋅ 109𝑠 We obtain D via filling in the necessary 

values in 

𝐷 =
𝑘B𝑇

6𝜋𝜂𝑟
= 2.2 ⋅ 10−13𝑚2𝑠−1 

Filling D and t into our first equation, we find the average distance travelled to be about 

0.037𝑚 =  𝑥. 

4. From 

〈𝑥2〉 = 2𝐷𝑡 = 2 ⋅
𝑘B𝑇

6𝜋𝜂𝑟
⋅ 𝑡  

We can see that the distance increases with temperature and time but decreases as viscosity 

and radius increase. Does this make sense to you? Can you give suggestions to what causes 

these parameters to influence the distance in such a way? 

 

 

 

 

 



  
 

  

Formulas you have to know 
  

𝑡1/2 =
𝑙𝑛(2)

λ
  Relation between half-life and decay constant  

(note: You can also just rederive this relation yourself on the exam with the knowledge in this reader) 

𝑉0 =
𝑘2[𝐸]𝑇[𝑆]

𝐾𝑀+[𝑆]
  Michaelis-Menten equation, no inhibition 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝛼𝐾𝑀+[𝑆]
  Michaelis-Menten equation, competitive inhibition 

𝑉0 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀+α′[𝑆]
  Michaelis-Menten equation, uncompetitive inhibition 

γ =  6πηr  Drag coefficient 

𝐹𝑑 = −γ𝑣  Drag force 

γ𝐷 = 𝑘𝐵𝑇  Stokes-Einstein relation 

𝑑 = √〈𝑥2〉 = √2𝐷𝑡 Mean-Squared-Distance of diffusion processes 

 




